Press "Enter" to skip to content

The Molecular Pathophysiology of Concussion


    • McCrory P.
    • Meeuwisse W.
    • Dvorak J.
    • et al.

    Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016.

    Br J Sports Med. 2017; 51: 838-847

    • Harmon K.G.
    • Clugston J.R.
    • Dec K.
    • et al.

    American Medical Society for Sports Medicine position statement on concussion in sport.

    Br J Sports Med. 2019; 53: 213-225

    • Lincoln A.E.
    • Caswell S.V.
    • Almquist J.L.
    • et al.

    Trends in concussion incidence in high school sports: a prospective 11-year study.

    Am J Sports Med. 2011; 39: 958-963

    • Rosenthal J.A.
    • Foraker R.E.
    • Collins C.L.
    • et al.

    National high school athlete concussion rates from 2005-2006 to 2011-2012.

    Am J Sports Med. 2014; 42: 1710-1715

    • Kerr Z.Y.
    • Chandran A.
    • Nedimyer A.K.
    • et al.

    Concussion Incidence and Trends in 20 High School Sports.

    Pediatrics. 2019; : e20192180https://doi.org/10.1542/peds.2019-2180

    • Kamins J.
    • Bigler E.
    • Covassin T.
    • et al.

    What is the physiological time to recovery after concussion? A systematic review.

    Br J Sports Med. 2017; 51: 935-940

    • Anderson M.N.
    • Womble M.N.
    • Mohler S.A.
    • et al.

    Preliminary Study of Fear of Re-Injury following Sport-Related Concussion in High School Athletes.

    Dev Neuropsychol. 2019; : 1-9https://doi.org/10.1080/87565641.2019.1667995

    • Aubry M.
    • Cantu R.
    • Dvorak J.
    • et al.

    Summary and agreement statement of the first International Conference on Concussion in Sport, Vienna 2001.

    Br J Sports Med. 2002; 36: 6-7

    • Lumba-Brown A.
    • Yeates K.O.
    • Sarmiento K.
    • et al.

    Centers for Disease Control and Prevention Guideline on the Diagnosis and Management of Mild Traumatic Brain Injury Among Children.

    JAMA Pediatr. 2018; : e182853https://doi.org/10.1001/jamapediatrics.2018.2853

    • McCrory P.
    • Johnston K.
    • Meeuwisse W.
    • et al.

    Summary and agreement statement of the 2nd international conference on concussion in Sport, Prague 2004.

    Br J Sports Med. 2005; 39: 196-204

    • Chin E.Y.
    • Nelson L.D.
    • Barr W.B.
    • et al.

    Reliability and validity of the sport concussion assessment tool-3 (SCAT3) in high school and collegiate athletes.

    Am J Sports Med. 2016; 44: 2276-2285

    • Chan M.
    • Vielleuse J.V.
    • Vokaty S.
    • et al.

    Test-retest reliability of the sport concussion assessment tool 2 (SCAT2) for uninjured children and young adults.

    Br J Sports Med. 2013; 47: e1

    • Echemendia R.J.
    • Meeuwisse W.
    • McCrory P.
    • et al.

    The Sport Concussion Assessment Tool 5th Edition (SCAT5).

    Br J Sports Med. 2017; 51: 848-850

    • Echemendia R.J.
    • Broglio S.P.
    • Davis G.A.
    • et al.

    What tests and measures should be added to the SCAT3 and related tests to improve their reliability, sensitivity and/or specificity in sideline concussion diagnosis? A systematic review.

    Br J Sports Med. 2017; 51: 895-901

    • Guskiewicz K.M.
    • Register-Mihalik J.
    • McCrory P.
    • et al.

    Evidence-based approach to revising the SCAT2: introducing the SCAT3.

    Br J Sports Med. 2013; 47: 289-293

    • Broglio S.P.
    • Katz B.P.
    • Zhao S.
    • et al.

    CARE Consortium Investigators. Test-retest reliability and interpretation of common concussion assessment tools: findings from the NCAA-DoD CARE Consortium.

    Sports Med. 2017; https://doi.org/10.1007/s40279-017-0813-0

    • McPherson A.L.
    • Nagai T.
    • Webster K.E.
    • et al.

    Musculoskeletal injury risk after sport-related concussion: a systematic review and meta-analysis.

    Am J Sports Med. 2018; https://doi.org/10.1177/0363546518785901

  • Concussion – mild TBI: recoverable injury with potential for serious sequelae.

    Neurosurg Clin N Am. 2016; 27: 441-452

    • Iverson G.L.
    • Gardner A.J.
    • Terry D.P.
    • et al.

    Predictors of clinical recovery from concussion: a systematic review.

    Br J Sports Med. 2017; 51: 941-948

    • McCrory P.
    • Meeuwisse W.H.
    • Echemendia R.J.
    • et al.

    What is the lowest threshold to make a diagnosis of concussion?.

    Br J Sports Med. 2013; 47: 268-271

    • McCrory P.
    • Feddermann-Demont N.
    • Dvořák J.
    • et al.

    What is the definition of sports-related concussion: a systematic review.

    Br J Sports Med. 2017; 51: 877-887

    • Barkhoudarian G.
    • Hovda D.A.
    • Giza C.C.

    The molecular pathophysiology of concussive brain injury.

    Clin Sports Med. 2011; 30 (): 33-48

    • Vagnozzi R.
    • Signoretti S.
    • Tavazzi B.
    • et al.

    Hypothesis of the postconcussive vulnerable brain: experimental evidence of its metabolic occurrence.

    Neurosurgery. 2005; 57 (): 164-171

    • Vagnozzi R.
    • Tavazzi B.
    • Signoretti S.
    • et al.

    Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment–part I.

    Neurosurgery. 2007; 61 (): 379-388

    • Shultz S.R.
    • Bao F.
    • Omana V.
    • et al.

    Repeated mild lateral fluid percussion brain injury in the rat causes cumulative long-term behavioral impairments, neuroinflammation, and cortical loss in an animal model of repeated concussion.

    J Neurotrauma. 2011; 29: 281-294

  • Historical Review of the Fluid-Percussion TBI Model.

    Front Neurol. 2016; 7https://doi.org/10.3389/fneur.2016.00217

  • A lateral fluid percussion injury model for studying traumatic brain injury in rats.

    in: Tharakan B. Traumatic and ischemic injury: methods and protocols. Methods in molecular biology. Springer,
    New York2018: 27-36https://doi.org/10.1007/978-1-4939-7526-6_3

    • Lifshitz J.
    • Rowe R.K.
    • Griffiths D.R.
    • et al.

    Clinical relevance of midline fluid percussion brain injury: acute deficits, chronic morbidities and the utility of biomarkers.

    Brain Inj. 2016; 30: 1293-1301

    • Robinson S.
    • Winer J.L.
    • Chan L.A.S.
    • et al.

    Extended erythropoietin treatment prevents chronic executive functional and microstructural deficits following early severe traumatic brain injury in rats.

    Front Neurol. 2018; 9: 451

  • Controlled cortical impact for modeling traumatic brain injury in animals.

    in: Srivastava A.K. Cox C.S. Pre-clinical and clinical methods in brain trauma research. Neuromethods. Springer,
    New York2018: 81-95https://doi.org/10.1007/978-1-4939-8564-7_5

    • Hoogenboom W.S.
    • Branch C.A.
    • Lipton M.L.

    Animal models of closed-skull, repetitive mild traumatic brain injury.

    Pharmacol Ther. 2019; 198: 109-122

    • Deng-Bryant Y.
    • Leung L.Y.
    • Madathil S.
    • et al.

    Chronic Cognitive Deficits and Associated Histopathology Following Closed-Head Concussive Injury in Rats.

    Front Neurol. 2019; 10https://doi.org/10.3389/fneur.2019.00699

    • Fehily B.
    • Bartlett C.A.
    • Lydiard S.
    • et al.

    Differential responses to increasing numbers of mild traumatic brain injury in a rodent closed-head injury model.

    J Neurochem. 2019; 149: 660-678

  • The Neurometabolic Cascade of Concussion.

    J Athl Train. 2001; 36: 228

  • The new neurometabolic cascade of concussion.

    Neurosurgery. 2014; 75: S24-S33

    • Jassam Y.N.
    • Izzy S.
    • Whalen M.
    • et al.

    Neuroimmunology of traumatic brain injury: time for a paradigm shift.

    Neuron. 2017; 95: 1246-1265

    • Yoshino A.
    • Hovda D.A.
    • Kawamata T.
    • et al.

    Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state.

    Brain Res. 1991; 561: 106-119

    • Yuen T.J.
    • Browne K.D.
    • Iwata A.
    • et al.

    Sodium channelopathy induced by mild axonal trauma worsens outcome after a repeat injury.

    J Neurosci Res. 2009; 87: 3620-3625

    • Tang-Schomer M.D.
    • Johnson V.E.
    • Baas P.W.
    • et al.

    Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury.

    Exp Neurol. 2012; 233: 364-372

    • Choe M.C.
    • Babikian T.
    • DiFiori J.
    • et al.

    A pediatric perspective on concussion pathophysiology.

    Curr Opin Pediatr. 2012; 24: 689-695

    • Shenton M.
    • Hamoda H.
    • Schneiderman J.
    • et al.

    A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury.

    Brain Imaging Behav. 2012; 6: 137-192

    • Koerte I.K.
    • Hufschmidt J.
    • Muehlmann M.
    • et al.

    Advanced neuroimaging of mild traumatic brain injury.

    in: Laskowitz D. Grant G. Translational research in traumatic brain injury. Frontiers in neuroscience. CRC Press/Taylor and Francis Group,
    Boca Raton (FL)2016 () ()

    • Jurick S.M.
    • Bangen K.J.
    • Evangelista N.D.
    • et al.

    Advanced neuroimaging to quantify myelin in vivo: application to mild TBI.

    Brain Inj. 2016; 30: 1452-1457

    • Li H.H.
    • Lee S.M.
    • Cai Y.
    • et al.

    Differential gene expression in hippocampus following experimental brain trauma reveals distinct features of moderate and severe injuries.

    J Neurotrauma. 2004; 21: 1141-1153

    • Shultz S.R.
    • MacFabe D.F.
    • Foley K.A.
    • et al.

    Sub-concussive brain injury in the Long-Evans rat induces acute neuroinflammation in the absence of behavioral impairments.

    Behav Brain Res. 2012; 229: 145-152

    • Chang L.
    • Munsaka S.M.
    • Kraft-Terry S.
    • et al.

    Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain.

    J Neuroimmune Pharmacol. 2013; 8: 576-593

    • Albrecht D.S.
    • Granziera C.
    • Hooker J.M.
    • et al.

    In Vivo Imaging of Human Neuroinflammation.

    ACS Chem Neurosci. 2016; 7: 470-483

    • Henry L.C.
    • Tremblay S.
    • Boulanger Y.
    • et al.

    Neurometabolic Changes in the Acute Phase after Sports Concussions Correlate with Symptom Severity.

    J Neurotrauma. 2010; 27: 65-76

    • Lin A.P.
    • Liao H.J.
    • Merugumala S.K.
    • et al.

    Metabolic imaging of mild traumatic brain injury.

    Brain Imaging Behav. 2012; 6: 208-223

    • Alosco M.L.
    • Jarnagin J.
    • Rowland B.
    • et al.

    Magnetic Resonance Spectroscopy as a Biomarker for Chronic Traumatic Encephalopathy.

    Semin Neurol. 2017; 37: 503-509

    • Lin A.P.
    • Ramadan S.
    • Stern R.A.
    • et al.

    Changes in the neurochemistry of athletes with repetitive brain trauma: preliminary results using localized correlated spectroscopy.

    Alzheimers Res Ther. 2015; 7: 13

    • Ross B.D.
    • Ernst T.
    • Kreis R.
    • et al.

    1H MRS in acute traumatic brain injury.

    J Magn Reson Imaging. 1998; 8: 829-840

    • Vagnozzi R.
    • Signoretti S.
    • Cristofori L.
    • et al.

    Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients.

    Brain. 2010; 133: 3232-3242

    • Vagnozzi R.
    • Signoretti S.
    • Tavazzi B.
    • et al.

    Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes–part III.

    Neurosurgery. 2008; 62 (): 1286-1295

    • Poole V.N.
    • Abbas K.
    • Shenk T.E.
    • et al.

    MR spectroscopic evidence of brain injury in the non-diagnosed collision sport athlete.

    Dev Neuropsychol. 2014; 39: 459-473

    • Panchal H.
    • Sollmann N.
    • Pasternak O.
    • et al.

    Neuro-Metabolite Changes in a Single Season of University Ice Hockey Using Magnetic Resonance Spectroscopy.

    Front Neurol. 2018; 9: 616

    • Chamard E.
    • Théoret H.
    • Skopelja E.N.
    • et al.

    A prospective study of physician-observed concussion during a varsity university hockey season: metabolic changes in ice hockey players. Part 4 of 4.

    Neurosurg Focus. 2012; 33: E4

    • Gardner A.J.
    • Iverson G.L.
    • Wojtowicz M.
    • et al.

    MR spectroscopy findings in retired professional rugby league players.

    Int J Sports Med. 2017; 38: 241-252

    • Koerte I.K.
    • Lin A.P.
    • Muehlmann M.
    • et al.

    Altered neurochemistry in former professional soccer players without a history of concussion.

    J Neurotrauma. 2015; 32: 1287-1293

    • Koerte I.K.
    • Lin A.P.
    • Willems A.
    • et al.

    A review of neuroimaging findings in repetitive brain trauma.

    Brain Pathol. 2015; 25: 318-349

    • Braun M.
    • Vaibhav K.
    • Saad N.M.
    • et al.

    White matter damage after traumatic brain injury: a role for damage associated molecular patterns.

    Biochim Biophys Acta. 2017; 1863: 2614-2626

    • Foell D.
    • Wittkowski H.
    • Roth J.

    Mechanisms of disease: a “DAMP” view of inflammatory arthritis.

    Nat Clin Pract Rheumatol. 2007; 3: 382-390

  • Immune surveillance of the CNS following infection and injury.

    Trends Immunol. 2015; 36: 637-650

    • Vénéreau E.
    • Ceriotti C.
    • Bianchi M.E.

    DAMPs from cell death to new life.

    Front Immunol. 2015; 6https://doi.org/10.3389/fimmu.2015.00422

    • Yang S.
    • Xu L.
    • Yang T.
    • et al.

    High-mobility group box-1 and its role in angiogenesis.

    J Leukoc Biol. 2014; 95: 563-574

    • van Beijnum J.R.
    • Nowak-Sliwinska P.
    • van den Boezem E.
    • et al.

    Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1.

    Oncogene. 2013; 32: 363-374

    • Mitola S.
    • Belleri M.
    • Urbinati C.
    • et al.

    Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine.

    J Immunol. 2006; 176: 12-15

    • Davalos D.
    • Grutzendler J.
    • Yang G.
    • et al.

    ATP mediates rapid microglial response to local brain injury in vivo.

    Nat Neurosci. 2005; 8: 752-758

    • Fourgeaud L.
    • Través P.G.
    • Tufail Y.
    • et al.

    TAM receptors regulate multiple features of microglial physiology.

    Nature. 2016; 532: 240-244

    • Madathil S.K.
    • Wilfred B.S.
    • Urankar S.E.
    • et al.

    Early microglial activation following closed-head concussive injury is dominated by pro-inflammatory M-1 type.

    Front Neurol. 2018; 9: 964

    • Cristofori L.
    • Tavazzi B.
    • Gambin R.
    • et al.

    Biochemical analysis of the cerebrospinal fluid: evidence for catastrophic energy failure and oxidative damage preceding brain death in severe head injury: a case report.

    Clin Biochem. 2005; 38: 97-100

    • Mouzon B.C.
    • Bachmeier C.
    • Ferro A.
    • et al.

    Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model.

    Ann Neurol. 2014; 75: 241-254

    • Cheng J.S.
    • Craft R.
    • Yu G.-Q.
    • et al.

    Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice.

    PLoS One. 2014; 9: e115765

    • Broussard J.I.
    • Acion L.
    • De Jesús-Cortés H.
    • et al.

    Repeated mild traumatic brain injury produces neuroinflammation, anxiety-like behaviour and impaired spatial memory in mice.

    Brain Inj. 2018; 32: 113-122

    • Mychasiuk R.
    • Hehar H.
    • Candy S.
    • et al.

    The direction of the acceleration and rotational forces associated with mild traumatic brain injury in rodents effect behavioural and molecular outcomes.

    J Neurosci Methods. 2016; 257: 168-178

    • Petraglia A.L.
    • Plog B.A.
    • Dayawansa S.
    • et al.

    The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy.

    J Neurotrauma. 2014; 31: 1211-1224

    • Kierans A.S.
    • Kirov II,
    • Gonen O.
    • et al.

    Myoinositol and glutamate complex neurometabolite abnormality after mild traumatic brain injury.

    Neurology. 2014; 82: 521-528

    • Shutter L.
    • Tong K.A.
    • Holshouser B.A.

    Proton MRS in acute traumatic brain injury: role for glutamate/glutamine and choline for outcome prediction.

    J Neurotrauma. 2004; 21: 1693-1705

    • Ashwal S.
    • Holshouser B.
    • Tong K.
    • et al.

    Proton MR spectroscopy detected glutamate/glutamine is increased in children with traumatic brain injury.

    J Neurotrauma. 2004; 21: 1539-1552

    • Purves D.
    • Augustine G.J.
    • Fitzpatrick D.
    • et al.

    Glutamate Receptors. Neuroscience 2nd edition.

    () ()

    • Guerriero R.M.
    • Giza C.C.
    • Rotenberg A.

    Glutamate and GABA imbalance following traumatic brain injury.

    Curr Neurol Neurosci Rep. 2015; 15: 27

    • Rao V.L.
    • Başkaya M.K.
    • Doğan A.
    • et al.

    Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain.

    J Neurochem. 1998; 70: 2020-2027

    • Fineman I.
    • Hovda D.A.
    • Smith M.
    • et al.

    Concussive brain injury is associated with a prolonged accumulation of calcium: a 45Ca autoradiographic study.

    Brain Res. 1993; 624: 94-102

    • Nilsson P.
    • Hillered L.
    • Olsson Y.
    • et al.

    Regional changes in interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats.

    J Cereb Blood Flow Metab. 1993; 13: 183-192

  • All roads lead to disconnection?–Traumatic axonal injury revisited.

    Acta Neurochir (Wien). 2006; 148 (): 181-193

    • Weber J.T.
    • Rzigalinski B.A.
    • Willoughby K.A.
    • et al.

    Alterations in calcium-mediated signal transduction after traumatic injury of cortical neurons.

    Cell Calcium. 1999; 26: 289-299

    • Zander N.E.
    • Piehler T.
    • Banton R.
    • et al.

    Effects of repetitive low-pressure explosive blast on primary neurons and mixed cultures.

    J Neurosci Res. 2016; 94: 827-836

    • Paiva W.S.
    • Bezerra D.A.F.
    • Amorim R.L.O.
    • et al.

    Serum sodium disorders in patients with traumatic brain injury.

    Ther Clin Risk Manag. 2011; 7: 345-349

    • Grover H.
    • Qian Y.
    • Boada F.E.
    • et al.

    MRI Evidence of Altered Callosal Sodium in Mild Traumatic Brain Injury.

    AJNR Am J Neuroradiol. 2018; 39: 2200-2204

    • McCrea M.
    • Broglio S.
    • McAllister T.
    • et al.

    Return to play and risk of repeat concussion in collegiate football players: comparative analysis from the NCAA Concussion Study (1999-2001) and CARE Consortium (2014-2017).

    Br J Sports Med. 2019; https://doi.org/10.1136/bjsports-2019-100579

  • From psychoneurosis to ICHD-2: an overview of the state of the art in post-traumatic headache.

    Headache. 2009; 49: 1097-1111

    • Bramley H.
    • Heverley S.
    • Lewis M.M.
    • et al.

    Demographics and treatment of adolescent posttraumatic headache in a regional concussion clinic.

    Pediatr Neurol. 2015; 52: 493-498

  • Multidisciplinary approach to psychiatric symptoms in mild traumatic brain injury: complex sequelae necessitate a cadre of treatment providers.

    Surg Neurol Int. 2013; 4https://doi.org/10.4103/2152-7806.110150

    • Wickwire E.M.
    • Schnyer D.M.
    • Germain A.
    • et al.

    Sleep, sleep disorders, and circadian health following mild traumatic brain injury in adults: review and research agenda.

    J Neurotrauma. 2018; 35: 2615-2631

    • Bramley H.
    • Henson A.
    • Lewis M.M.
    • et al.

    Sleep disturbance following concussion is a risk factor for a prolonged recovery.

    Clin Pediatr (Phila). 2017; 56: 1280-1285

    • Howell D.R.
    • Oldham J.R.
    • Brilliant A.N.
    • et al.

    Trouble falling asleep after concussion is associated with higher symptom burden among children and adolescents.

    J Child Neurol. 2019; 34: 256-261

    • Mayers L.B.
    • Redick T.S.
    • Chiffriller S.H.
    • et al.

    Working memory capacity among collegiate student athletes: effects of sport-related head contacts, concussions, and working memory demands.

    J Clin Exp Neuropsychol. 2011; 33: 532-537

  • The effect of sport concussion on neurocognitive function, self-report symptoms and postural control: a meta-analysis.

    Sports Med. 2008; 38: 53-67

    • Howell D.R.
    • Osternig L.
    • van Donkelaar P.
    • et al.

    Effects of concussion on attention and executive function in adolescents.

    Med Sci Sports Exerc. 2013; 45: 1030-1037

    • Knollman Porter K.
    • Constantinidou F.
    • Hutchinson Marron K.

    Speech-language pathology and concussion management in intercollegiate athletics: the Miami University Concussion Management Program.

    Am J Speech Lang Pathol. 2014; 23: 507-519

    • Zuckerman S.L.
    • Yengo-Kahn A.M.
    • Buckley T.A.
    • et al.

    Predictors of postconcussion syndrome in collegiate student-athletes.

    Neurosurg Focus. 2016; 40: E13

    • van Mechelen W.
    • Hlobil H.
    • Kemper H.C.

    Incidence, severity, aetiology and prevention of sports injuries. A review of concepts.

    Sports Med. 1992; 14: 82-99

    • Leddy J.
    • Hinds A.
    • Sirica D.
    • et al.

    The Role of Controlled Exercise in Concussion Management.

    PM R. 2016; 8: S91-S100

    • McCrory P.
    • Meeuwisse W.H.
    • Aubry M.
    • et al.

    Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012.

    Br J Sports Med. 2013; 47: 250-258

    • Thomas D.G.
    • Apps J.N.
    • Hoffmann R.G.
    • et al.

    Benefits of strict rest after acute concussion: a randomized controlled trial.

    Pediatrics. 2015; 135: 213-223

    • Leddy J.J.
    • Haider M.N.
    • Ellis M.J.
    • et al.

    Early subthreshold aerobic exercise for sport-related concussion: a randomized clinical trial.

    JAMA Pediatr. 2019; 173: 319-325

    • Tan C.O.
    • Meehan W.P.
    • Iverson G.L.
    • et al.

    Cerebrovascular regulation, exercise, and mild traumatic brain injury.

    Neurology. 2014; 83: 1665-1672

  • The Role of Nutritional Supplements in Sports Concussion Treatment.

    Curr Sports Med Rep. 2016; 15: 16-19

    • Schneider K.J.
    • Leddy J.J.
    • Guskiewicz K.M.
    • et al.

    Rest and treatment/rehabilitation following sport-related concussion: a systematic review.

    Br J Sports Med. 2017; 51: 930-994

    • Collins M.W.
    • Kontos A.P.
    • Okonkwo D.O.
    • et al.

    Statements of agreement from the Targeted Evaluation and Active Management (TEAM) approaches to treating concussion meeting held in Pittsburgh, October 15-16, 2015.

    Neurosurgery. 2016; 79: 912-929



  • Source link

    Be First to Comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *