Press "Enter" to skip to content

Random forest model to identify factors associated with anabolic-androgenic steroid use | BMC Sports Science, Medicine and Rehabilitation


  • 1.

    Kicman AT. Pharmacology of anabolic steroids. Brit J Pharmacol. 2008;154(3):502–21. https://doi.org/10.1038/bjp.2008.165.

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med. 1996;335(1):1–7. https://doi.org/10.1056/NEJM199607043350101.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Hakansson A, Mickelsson K, Wallin C, Berglund M. Anabolic androgenic steroids in the general population: user characteristics and associations with substance use. Eur Addict Res. 2012;18(2):83–90. https://doi.org/10.1159/000333037.

    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Pope HG, Kanayama G, Athey A, Ryan E, Hudson JI, Baggish A. The lifetime prevalence of anabolic-androgenic steroid use and dependence in Americans: current best estimates. Am J Addiction. 2014;23(4):371–7. https://doi.org/10.1111/j.1521-0391.2013.12118.x.

    Article 

    Google Scholar
     

  • 5.

    Buckman JF, Farris SG, Yusko DA. A national study of substance use behaviors among NCAA male athletes who use banner performance enhancing substances. Drug Alcohol Depend. 2013;131(1-2):50–5. https://doi.org/10.1016/j.drugalcdep.2013.04.023.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Fijan A, Eftekhari MH, Dashtabi A. The prevalence of anabolic androgenic steroid misuse and its associated factors among bodybuilders in Shiraz, Iran. Int J Nutr Sci. 2018;3(3):151–6.


    Google Scholar
     

  • 7.

    Pasharavesh L, Ramandi M, Khoushbou S, Rezaei M, Rezvani S, Abbasi MR, et al. Prevalence of doping agents’ abuse and male bodybuilders’ knowledge about their side effects in Kermanshah gymnasiums (2004). J Kermanshah Univ Med Sci (behbood). 2008;11(4):418–27.


    Google Scholar
     

  • 8.

    Smit DL, de Hon O, Venhuis BJ, den Heijer M, de Ronde W. Baseline characteristics of the HAARLEM study: 100 male amateur athletes using anabolic androgenic steroids. Scand J Med Sci Sports. 2020;30(3):531–9. https://doi.org/10.1111/sms.13592.

    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Gheddar L, Ameline A, Raul J-S, Kintz P. Designer anabolic steroids: a challenge for toxicologists. Toxicol Anal Clin. 2019;31(4):293–7. https://doi.org/10.1016/j.toxac.2019.07.001.

    Article 

    Google Scholar
     

  • 10.

    van Amsterdam J, Opperhuizen A, Hartgens F. Adverse health effects of anabolic–androgenic steroids. Regul Toxicol Pharmacol. 2010;57(1):117–23. https://doi.org/10.1016/j.yrtph.2010.02.001.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Tahtamouni LH, Mustafa NH, Alfaouri AA, Hassan IM, Abdalla MY, Yasin SR. Prevalence and risk factors for anabolic-androgenic steroid abuse among Jordanian collegiate students and athletes. Eur J Public Health. 2008;18(6):661–5. https://doi.org/10.1093/eurpub/ckn062.

    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Saati Asr MH, Bashirian S, Heidari Moghadam R, Barati M, Moeini B. Personal and psychosocial factors associated with anabolic-androgenic steroid use among Iranian male bodybuilders. J Subst Abus. 2018;23(4):390–5.


    Google Scholar
     

  • 13.

    Barati M, Allahverdipour H, Hidarnia A, Niknami S, Bashirian S. Belief-based tobacco smoking scale: evaluating the psychometric properties of the theory of planned behavior’s constructs. Health Promot Perspect. 2015;5(1):59–71. https://doi.org/10.15171/hpp.2015.008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Gerrard M, Gibbons FX, Houlihan AE, Stock ML, Pomery EA. A dual-process approach to health risk decision making: the prototype willingness model. Dev Rev. 2008;28(1):29–61. https://doi.org/10.1016/j.dr.2007.10.001.

    Article 

    Google Scholar
     

  • 15.

    Gibbons FX, Gerrard M, Blanton H, Russell DW. Reasoned action and social reaction: willingness and intention as independent predictors of health risk. J Pers Soc Psychol. 1998;74(5):1164–80. https://doi.org/10.1037/0022-3514.74.5.1164.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Dal Cin S, Worth KA, Gerrard M, Gibbons FX, Stoolmiller M, Wills TA, Sargent JD. Watching and drinking: expectancies, prototypes, and friends’ alcohol use mediate the effect of exposure to alcohol use in movies on adolescent drinking. Health Psychol. 2009;28(4):473–83. https://doi.org/10.1037/a0014777.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Abedini S, MorowatiSharifabad M, Kordasiabi MC, Ghanbarnejad A. Predictors of non-hookah smoking among high-school students based on prototype/willingness model. Health Promot Perspect. 2014;4(1):46–53. https://doi.org/10.5681/hpp.2014.006.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Hukkelberg SS, Dykstra JL. Using the prototype/willingness model to predict smoking behaviour among Norwegian adolescents. Addict Behav. 2009;34(3):270–6. https://doi.org/10.1016/j.addbeh.2008.10.024.

    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Kanayama G, Brower KJ, Wood RI, Hudson JI, Pope HG Jr. Anabolic–androgenic steroid dependence: an emerging disorder. Addiction. 2009;104(12):1966–78. https://doi.org/10.1111/j.1360-0443.2009.02734.x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Toohey JV. Non-medical drug use among intercollegiate athletes at five American universities. Bull Narc UNODC. 1978;30(3):61–4.

    CAS 

    Google Scholar
     

  • 21.

    Biglarian A, Bakhshi E, Rahgozar M, Karimloo M. Comparison of artificial neural network and logistic regression in predicting of binary response for medical data the stage of disease in gastric cancer. J North Khorasan Univ Med Sci. 2012;3(5):15–21.

    Article 

    Google Scholar
     

  • 22.

    Stylianou N, Akbarov A, Kontopantelis E, Buchan I, Dunn KW. Mortality risk prediction in burn injury: comparison of logistic regression with machine learning approaches. Burns. 2015;41(5):925–34. https://doi.org/10.1016/j.burns.2015.03.016.

    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Yang L, Liu S, Tsoka S, Papageorgiou LG. A regression tree approach using mathematical programming. Expert Syst Appl. 2017;78:347–57. https://doi.org/10.1016/j.eswa.2017.02.013.

    Article 

    Google Scholar
     

  • 24.

    Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2009. https://doi.org/10.1007/978-0-387-84858-7.


    Google Scholar
     

  • 25.

    Zhang H, Singer BH. Recursive partitioning and applications: Springer Science & Business Media; 2010. https://doi.org/10.1007/978-1-4419-6824-1.

  • 26.

    Asr M, Moghadam R, Bashirian S, Barati M. Effectiveness of educational program based on Prototype Willingness Model on preventing and decreasing anabolic-androgenic steroids among male bodybuilders. Koomesh. 2018;20(2):263–73.


    Google Scholar
     

  • 27.

    Behnampour N, Hajizadeh E, Semnani S, Zayeri F. The introduction and application of classification tree model for determination of risk factor for esophageal cancer in Golestan province. Jorjani Biomed J. 2013;1(2):38–46.


    Google Scholar
     

  • 28.

    Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18–22.


    Google Scholar
     

  • 29.

    Rashidlamir A, Dehbashi M, Taghizadeh V. Study the prevalence amount supplements are allowed authorized and unauthorized between athletes men bodybuilders and pavrlyftyng. Shomal J Manage Physiol Sport. 2014;2(1):1–13.


    Google Scholar
     

  • 30.

    Al Ghobain M, Konbaz M, Almassad A, Alsultan A, Al Shubaili M, AlShabanh O. Prevalence, knowledge and attitude of prohibited substances use (doping) among Saudi sport players. Subst Abuse Treat Prev Policy. 2016;11(1):1–6. https://doi.org/10.1186/s13011-016-0058-1.

    Article 

    Google Scholar
     

  • 31.

    Bijeh N, Dehbashi M, Saghi M. Studying the amount of prevalence awareness and complications of anabolic steroids among the male athletes in Mashhad city. J Pract Stud Biosci Sport. 2014;4(2):78–89.


    Google Scholar
     

  • 32.

    Zakeri A. The frequency of infertility following anabolic steroid in bodybuilders in Tehran in 2010. Iran J Obstet Gynecol Infertil. 2012;15(2):31–8.


    Google Scholar
     

  • 33.

    Patiro SPS, Dharmmesta BS, Nugroho SS, Sutikno B. Extended theory of planned behavior as model of anabolic androgenic steroid use by Indonesian bodybuilders. Gadjah Mada Univ. 2016;31(1):99–118.


    Google Scholar
     

  • 34.

    Whitaker L, Long J, Petróczi A, Backhouse S. Using the prototype willingness model to predict doping in sport. Scand J Med Sci Sports. 2014;24(5):398–405.

    Article 

    Google Scholar
     

  • 35.

    Barati M, Allahverdipour H, Hidarnia A, Niknami S. Predicting tobacco smoking among male adolescents in Hamadan city, west of Iran in 2014: an application of the prototype willingness model. J Res Health Sci. 2015;15(2):113–8.

    PubMed 

    Google Scholar
     

  • 36.

    Barati M, Allahverdipour H, Moinei B, Farhadinasab A, Mahjub H. Evaluation of theory of planned behavior-based education in prevention of MDMA (ecstasy) use among university students. Med J Tabriz Uni Med Sci. 2011;33(3):20–9.


    Google Scholar
     

  • 37.

    Eslami AA, Jalilian F, Ataee M, Alavijeh MM, Mahboubi M, Afsar A, Aghaei A. Intention and willingness in understanding Ritalin misuse among Iranian medical college students: a cross-sectional study. Global J Health Sci. 2014;6(6):43–53. https://doi.org/10.5539/gjhs.v6n6p43.

    Article 

    Google Scholar
     

  • 38.

    Todd J, Mullan B. Using the theory of planned behaviour and prototype willingness model to target binge drinking in female undergraduate university students. Addict Behav. 2011;36(10):980–6. https://doi.org/10.1016/j.addbeh.2011.05.010.

    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Bashirian S, Hidarnia A, Allahverdipour H, Hajizadeh E. Application of the theory of planned behavior to predict drug abuse related behaviors among adolescents. J Res Health Sci. 2012;1(12):54–60.


    Google Scholar
     

  • 40.

    Litchfield RA, White KM. Young adults’ willingness and intentions to use amphetamines: an application of the theory of reasoned action. E-J Appl Psychol. 2006;2(1):1–8.

    Article 

    Google Scholar
     

  • 41.

    Hammer JH, Vogel DL. Assessing the utility of the willingness/prototype model in predicting help-seeking decisions. J Couns Psychol. 2013;60(1):83–97. https://doi.org/10.1037/a0030449.

    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Ajzen I. The theory of planned behaviour: reactions and reflections. Psychol Health. 2011;26(9):1113–27.

  • 43.

    Beck L, Ajzen I. Predicting dishonest actions using the theory of planned behavior. J Res Pers. 1991;25(3):285–301. https://doi.org/10.1016/0092-6566(91)90021-H.

    Article 

    Google Scholar
     



  • Source link

    Be First to Comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *