Press "Enter" to skip to content

Comparison of maximal lactate steady state with anaerobic threshold determined by various methods based on graded exercise test with 3-minute stages in elite cyclists | BMC Sports Science, Medicine and Rehabilitation


  • 1.

    Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35:236–43.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 2.

    Faude O, Kindermann W, Meyer T. Lactate threshold concepts. How valid are they? Sports Med. 2009;39(6):469–90.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 3.

    Foster C, Cotter HM. Blood lactate, respiratory, heart rate markers on the capacity for sustained exercise. In: Maud PJ, Foster C, editors. Physiological assessment of human fitness. 2nd ed. Champaign: Human Kinetics; 2006. p. 63–76.


    Google Scholar
     

  • 4.

    Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG. Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strength Cond Res. 2005;19(3):527–33.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Czuba M, Waśkiewicz Z, Zając A, Poprzęcki S, Cholewa J, Roczniok R. The effects of intermittent hypoxic training on aerobic capacity and endurance performance in cyclists. J Sports Sci Med. 2011;10:175–83.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Czuba M, Fidos-Czuba O, Płoszczyca K, Zając A, Langfort J. Comparison of the effect of intermittent hypoxic training vs. the live high, train low strategy on aerobic capacity and sports performance in cyclists in normoxia. Biol Sport. 2018;35:39–48.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Płoszczyca K, Foltyn J, Goliniewski J, Krężelok J, Poprzęcki S, Ozimek M, et al. Seasonal changes in gross efficiency and aerobic capacity in well-trained road cyclists. Isokinet Exerc Sci. 2019;27(3):193–202.

    Article 

    Google Scholar
     

  • 8.

    Yoshida T. Effect of dietary modifications on lactate threshold and onset of blood lactate accumulation during incremental exercise. Eur J Appl Physiol. 1984;53(3):200–5.

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Maassen N, Busse MW. The relationship between lactic acid and work load: a measure for endurance capacity or an indicator of carbohydrate deficiency? Eur J Appl Physiol Occup Physiol. 1989;58(7):728–37.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 10.

    Langfort J, Pilis W, Zarzeczny R, Nazar K, Kaciuba-Uscilko H. Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in men. J Physiol Pharmacol. 1996;47(2):361–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Langfort J, Czarnowski D, Zendzian-Piotrowska M, Zarzeczny R, Gorski J. Short-term low-carbohydrate diet dissociates lactate and ammonia thresholds in men. J Strength Cond Res. 2004;18(2):260–5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Berry MJ, Stoneman JV, Weyrich AS, Burney B. Dissociation of the ventilatory and lactate thresholds following caffeine ingestion. Med Sci Sports Exerc. 1991;23(4):463–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 13.

    Edge J, Bishop D, Goodman C. Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol (1985). 2006;101(3):918–25.

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Czuba M, Zajac A, Poprzecki S, Cholewa J, Woska S. Effects of sodium phosphate loading on aerobic power and capacity in off road cyclists. J Sports Sci Med. 2009;8(4):591–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Renberg J, Sandsund M, Wiggen ON, Reinertsen RE. Effect of ambient temperature on female endurance performance. J Therm Biol. 2014;45:9–14.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 16.

    Drzazga Z, Schisler I, Poprzȩcki S, Michnik A, Czuba M. Serum autofluorescence and biochemical markers in athlete’s response to strength effort in normobaric hypoxia: a preliminary study. Biomed Res Int. 2019;2019:5201351.

  • 17.

    Gerra G, Zaimovic A, Mascetti GG, Gardini S, Zambelli U, Timpano M, et al. Neuroendocrine responses to experimentally-induced psychological stress in healthy humans. Psychoneuroendocrinology. 2001;26(1):91–107.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    Hermann R, Lay D, Wahl P, Roth WT, Petrowski K. Effects of psychosocial and physical stress on lactate and anxiety levels. Stress. 2019;22(6):664–9.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 19.

    Urhausen A, Kindermann W. Diagnosis of overtraining: what tools do we have? Sports Med. 2002;32(2):95–102.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 20.

    Billat VL, Sirvent P, Py G, Koralsztein J-P, Mercier J. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med. 2003;33(6):407–26.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 21.

    Snyder AC, Wolfe T, Welsh R, Foster CA. Simplified approach to estimating maximal lactate steady state. Int J Sports Med. 1994;15:27–31.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 22.

    Van Schuylenbergh R, Vanden EB, Hespel P. Correlations between lactate and ventilatory thresholds and the maximal lactate steady state in elite cyclists. Int J Sports Med. 2004;25(6):403–8.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 23.

    Czuba M, Zając A, Cholewa J, Poprzęcki S, Waśkiewicz Z, Mikołajec K. Lactate threshold (D-max method) and maximal lactate steady state in cyclists. J Hum Kinet. 2009;21:49–56.

    Article 

    Google Scholar
     

  • 24.

    Hauser T, Adam J, Schulz H. Comparison of selected lactate threshold parameters with maximal lactate steady state in cycling. Int J Sports Med. 2014;35(6):517–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Pallarés JG, Morán-Navarro R, Ortega JF, Fernández-Elías VE, Mora-Rodriguez R. Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclists. PLoS One. 2016;11(9):e0163389.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 26.

    Wahl P, Manunzio C, Vogt F, Strutt S, Volmary P, Bloch W, et al. Accuracy of a modified lactate minimum test and reverse lactate threshold test to determine maximal lactate steady state. J Strength Cond Res. 2017;31(12):3489–96.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 27.

    Jamnick NA, Botella J, Pyne DB, Bishop DJ. Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2peak. PLoS One. 2018;13(7):e0199794.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 28.

    Zwingmann L, Strutt S, Martin A, Volmary P, Bloch W, Wahl P. Modifications of the Dmax method in comparison to the maximal lactate steady state in young male athletes. Phys Sportsmed. 2019;47(2):174–81.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 29.

    Stockhausen W, Grathwohl D, Burklin C, Spranz P, Kuel J. Stage duration and increase of workload in incremental testing on a cycle ergometer. Eur J Appl Physiol. 1997;76:295–301.

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Bourdon PC, Woolford SM, Buckley JD. Effects of varying the step duration on the determination of lactate thresholds in elite rowers. Int J Sports Physiol Perform. 2018;13(6):687–93.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 31.

    Foxdal P, Sjodin A, Sjodin B. Comparison of blood lactate concentrations obtained during incremental and constant intensity exercise. Int J Sports Med. 1996;17:360–5.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 32.

    Kuipers H, Rietjans G, Verstappen F, Schoenmakers H, Hofman G. Effects of stage duration in incremental running tests on physiological variables. Int J Sports Med. 2003;24:486–91.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 33.

    Juel C, Kristiansen S, Pilgaard H, Wojtaszewski J, Rchter EA. Kinetics of lactate transports in sarcolemmal giant vesicles from human skeletal muscle. J Appl Physiol. 1994;76:1031–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 34.

    Pierce SJ, Hahn AG, Davie A, Lawton EW. Prolonged incremental tests do not necessarily compromise VO2max in well-trained athletes. J Sci Med Sport. 1999;2(4):356–63.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 35.

    Gavin JP, Willems MET, Myers SD. Repoducibilty of lactate markers during 4 and 8 min stage incremental running: a pilot study. J Sci Med Sport. 2014;17:635–9.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 36.

    Bishop D, Jenkins DG, Mackinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc. 1998;30(8):1270–5.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 37.

    Baron R. Aerobic and anaerobic power characteristics of off-road cyclists. Med Sci Sports Exerc. 2001;33(8):1387–93.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 38.

    Impellizzeri F, Sassi A, Rodriguez-Alonso M, Mognoni P, Marcora S. Exercise intensity during off-road cycling competitions. Med Sci Sports Exerc. 2002;34(11):1808–13.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 39.

    Moseley L, Achten J, Martin JC, Jeukendrup AE. No differences in cycling efficiency between world-class and recreational cyclists. Int J Sports Med. 2004;25(5):374–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 40.

    Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000;29:373–86.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 41.

    Kuipers H, Verstappen FT, Keizer HA, Guerten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiological correlates. Int J Sports Med. 1985;6:197–201.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 42.

    Cheng B, Kuipers H, Snyder AC, Keizer HA, Jeukendrup A, Hesselink M. A new approach for the determination of ventilator and lactate thresholds. Int J Sports Med. 1992;13:518–22.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 43.

    Stegmann H, Kindermann W, Schnabel A. Lactate kinetics and individual anaerobic threshold. Int J Sports Med. 1981;2:160–5.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 44.

    Coyle EF, Martin WH, Ehsani AA, Jhagberg JM, Bloomfield SA, Sinacore DR, et al. Blood lactate threshold in some well-trained ischemic heart disease patients. J Appl Physiol Respir Environ Exerc Physiol. 1983;54(1):18–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Heck H, Mader A, Hess G, Mucke S, Muller R, Hollmann W. Justification of the 4 mmol/l lactate threshold. Int J Sports Med. 1985;6(3):117–30.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 46.

    Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60:2020–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 47.

    Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307–10.

    Article 

    Google Scholar
     

  • 48.

    De Barros CL, Mendes TT, Mortimer Lde Á, Ramos GP, Garcia ES. Individual anaerobic threshold estimates maximal lactate steady state in temperate and hot climate. J Sports Med Phys Fitness. 2016;56(1–2):27–33.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Arratibel-Imaz I, Calleja-Gonzalez JR, Emparanza JI, Terrados N, Mjaanes JM, Ostojic SM. Lack of concordance amongst measurements of individual anaerobic threshold and maximal lactate steady state on a cycle ergometer. Phys Sportsmed. 2016;44(1):34–45.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 50.

    Henriksson J. Effects of physical training on the metabolism of skeletal muscle. Diabetes Care. 1992;15(11):1701–11.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 51.

    Juel C, Halestrap AP. Lactate transport in skeletal muscle – role and regulation of the monocarboxylate transporter. J Physiol. 1999;517(Pt 3):633–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Brooks GA. Cell–cell and intracellular lactate shuttles. J Physiol. 2009;587(Pt23):5591–600.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Lucia AJ, Pardo A, Durantez J, Hoyos J, Chicharro L. Physiological differences between professional and elite road cyclists. Int J Sports Med. 1998;19:342–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 54.

    Messonnier LA, Emhoff CW, Fattor JA, Horning MA, Carlson TJ, Brooks GA. Lactate kinetics at the lactate threshold in trained and untrained men. J Appl Physiol. 2013;114:1593–602.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 55.

    Zajac A, Poprzecki S, Maszczyk A, Czuba M, Michalczyk M, Zydek G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients. 2014;6:2493–508.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 56.

    Pilis K, Pilis A, Stec K, Pilis W, Langfort J, Letkiewicz S, et al. Three-year chronic consumption of low-carbohydrate diet impairs exercise performance and has a small unfavorable effect on lipid profile in middle-aged men. Nutrients. 2018;10:914.

    Article 
    CAS 

    Google Scholar
     

  • 57.

    Weltman A, Snead D, Seip R, Schurrer R, Levine S, Rutt R, et al. Prediction of lactate threshold and fixed blood lactate concentrations from 3200-m running performance in male runners. Int J Sports Med. 1987;8(6):401–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 58.

    Hoppeler H. Skeletal muscle substrate metabolism. Int J Obes Relat Metab Disord. 1999;23(Suppl 3):S7–S10.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 59.

    MacIntosh BR, Esau S, Svedahl K. The lactate minimum test for cycling: estimation of the maximal lactate steady state. Can J Appl Physiol. 2002;27:232–49.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 60.

    Svedahl K, MacIntosh BR. Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol. 2003;28(2):299–323.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 61.

    Amann M, Subudhi AW, Foster C. Predictive validity of ventilator and lactate thresholds for cycling time trial performance. Scand J Med Sci Sports. 2006;16(1):27–34.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 62.

    Francis JT Jr, Quinn TJ, Amann M, LaRoche DP. Defining intensity domains from the end power of a 3-min all-out cycling test. Med Sci Sports Exerc. 2010;42(9):1769–75.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 63.

    Loat CER, Rhodes EC. Relationship between the lactate and ventilatory thresholds during prolonged exercise. Sports Med. 1993;15:104–15.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     



  • Source link

    Be First to Comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *